
MATHEMA TICS: J. M. DALLA VALLE

Included among these is the sum of the squares of the characteristic
numbers of P1, i.e., the sum of ihe characteristic numbers of N1 = AA*;
this is the well-known unitary invariant Eapdpq of Frobenius.

p,q
When A is normal AA* = A*A or PU.UI*P1 = U*"P.P,U so that
I= U*PU = (U*PU)2. Hence P1 = U*P,U or UP1 = POU. Con-

versely if UP1 = P1U we have A*A = A*A so that a matrix A is normal.
when and only when its polar co6rdinates are commutable, that is, when the polar
representations A = P1U, A = UP2 coincide.

It may be mentioned that the above considerations are valid also in
the real domain. In this case the polar representation is simply the
algebraic formulation of the fact, well known for n = 3 from the kine-
matics of homogeneous linear (non-singular) deformations, that any such
deformation may be represented as a superposition of a dilatation and a
rotation (the norm AA* of A determining the ellipsoid of dilatation be-
longing to the deformation A).

1 See, for example, Weyl, H.; Gruppentheorie und Quantenmechanik, Leipzig,
pp. 19-23, 1928.

2 See Weyl, H., loc. cit.
3 Since writing the above this problem has been solved and will be treated in a forth-

coming note in these PROCEEDINGS.
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The Expansion Formula solution of the linear differential equation
with constant coefficients

dnx dn-lx
ao-+ al-++ +any =F

dyn dyn 1

was first stated by Oliver Heaviside. Perhaps due to his rather obscure
methods of presentation, various writers have stated that the formula
was given without proof. Nevertheless, Heaviside gave two proofs of
the formula which may be traced through his writings. One of these,
which we may designate as the second of Heaviside's proofs, was dis-
cussed a few years ago by Vallarta.I Heaviside really made no clear
point of demarcation between his proofs and in all probability did not
believe any proof was necessary. The Expansion Formula was but a
single result of his devious analyses in the solution of certain differential
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equations frequently met in electrical theory. Both proofs hinge on the
so-called Conjugate Property- of which .Heaviside, Rayleigh and Routh
made extensive use. Heaviside employed this theorem to great advantage
and it serves as a connecting link between the two proofs. The following
paragraphs are concerned with the first and restricted proof of the Ex-
pansion Formula which up to the present time has received scant atten-
tion; later, it will be shown that a proof may be easily and directly estab-
lished from Rayleigh's2 investigations of free and forced vibrations.
As has been stated, Heaviside's proof of his Expansion Formula solu-

tion is based on the Conjugate Property, which states that the mutual
potential and the mutual kinetic energies of two normal systems, r and
s are equal at every instant when all the conditions affecting the system
are accounted for. Thus symbolically

Urs- Trs = 0, (1)

where Urs is the mutual potential energy and Ts is the mutual-kinetic
energy. Heaviside repeatedly stated the application of this important
principle to the solution of linear differential equations. That a proof,
constructed along such considerations, should have been so long in forth-
coming is indeed rather remarkable. In deriving the Conjugate Property,
we shall follow Heaviside's procedure by considering the equations for a
line with distributed capacity, inductance and resistance, C, L, and r,
respectively, per unit length of line. These may be shown to be

di _ be 1 a2i
ri+L-=--dt ax C a2 (2)

Cde= __
dt d

From these an equation containing only e may be obtained, but the two
above will suffice. The most general solutions are, by the theory of
differential equations,

e =EAuep', i-f Aweo' (3)
where A is the subsidence constant, of which we shall hear more later,
u and w are the normal functions of potential and current (functions of

d
x only), and p is the operator -, a root of the determinental equation.
The normal solutions which determine the p's are gotten by putting

e = ue, i =Wet (4)

in the first of equations (2) above. The resulting equations will determine
the p's and is called the determinental equation.
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Thus far, the procedure has been in accordance with the steps usually
employed in solving certain forms of differential equations. Heaviside's
next step was to obtain an expression for the A's in (3) in terms of the
initial terminal conditions, and it was at this point that he threw aside
the orthodox methods for solving them and arrived at a general exipres-
sion by means of the Conjugate Property. This theorem and its applic-
ableness to the solution of the A's in (3) was originally presented in a
paper3 published in 1881, but its complete derivation was first given in
an article4 prepared the following year but published only in his Electrical
Papers. Retuming to equations (3), we can prove by substitution of
equations (4) and algebraical composition that

- /Ul U20

* f(Cu1u2 - Lwlw2)dx - [ tWl W2)line (5)
Jline - P2

where ul, U2 and wi, w2 are two admissible values belonging to a pair of
normal systems consistent with the p's by putting u, w and p in (4) first
equal to ul, wi, pi and then equal to U2, w2, p2. This is permissible so
long as the u's and w's are consistent with the p's. Now, in (5), let pi
approach p2; then on going to the limit, ul = u2 and w1 = w2 giving

(Cu2 - Lw2)dx = [w2
d

zl (6)
xie dp line

where Z is the function -. The interpretations are as follows: Equa-
w

tion (5) gives the excess of mutual potential energy over the mutual
kinetic energy of two normal arrangements of potential and current so
far as the line is concerned. When account is taken of the terminal
conditions, the right-hand members of both (5) and (6) vanish. Equa-
tion (6) is a special case of (5) when the normal systems are one and the
same. The excess of mutual potential over the mutual kinetic energy
is thus given in terms of the potential and current at the ends of the line.

If we concern ourselves with the initial conditions, we have from (3),
when t = 0

U = EAu
W = Awj (7)

U and W are the initial potential and current at one end of the line.
Multiplying the first by Cu and the second by Lw, these expressions can
be shown to follow

f(CUu - LWw)dx = A (Cu2 - Lw2)dx (8)
.Jlne Ji ne

680 PROC. N. A. S.



MATHEMA TICS: J. M. DALLA VALLE

Thus, utilizing (6)

(CUu - LWw)dx
Iinc ~~~Uoi- Toi U01 -Toi Uoi - Toi 9

(C2-Lw2)dx Ull-T - 2(U1- T) w2Zdz (9)

le(CU2 dp

where Uo0 and To, are the initial mutual potential and kinetic energies
of the initial and normal state as designated by the subscript 0l. By
analogy the other terms may be inferred from their proper subscripts.
If any energy resides initially in the terminal arrangements, additional
terms must be included. As a rule, in most cases met in practice, no
energy resides initially at the terminals. Combining (8) and (3), we get

U01 - To,1
i 2 dZdp (10)

thus being rid of the A's, which was Heaviside's chief purpose in develop-
ing the Conjugate Property. The subsidence solution has now been
derived in terms of the normal functions and known conditions. The
extension to the derivation of the Expansion Formula was then an easy
process. We shall here, however, only briefly state Heaviside's procedure.
The reader is referred to either the original discussion5 employed by
Heaviside, or to Vallarta's paper for an excellent treatment.
To obtain the Expansion Formula, having proceeded as far as (10),

Heaviside employed an artifice.5 Taking a circuit with the customary
constants, he converts the external forces applied to it into a condenser
of infinite capacity, thus creating a subsidence condition. The effect of
this substitution is the same as that of a constant applied voltage. By
utilizing the conjugate relationship of this system, and substituting in
(10) he obtains the final equation of subsidence

j=n E pit

j=1 Pi p Z(P) P=P (11)

j = 1, 2, 3, .. .,

where E is the voltage applied. The complete explicit solution follows
thus

/.E j= n Eftit

(P)P= o) 1 PgpZ(P)P=P (12)
1, 2, 3, .. ., n.

The first term on the right is the steady state solution. Heaviside at
once noted the usefulness of this equation, although the basis for its
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deduction was by no means general. We shall now turn to a general
proof of the formula based on an analysis due to Raleigh2 with which
Heaviside was undoubtedly familiar. The proof is a digression of the
alternative Heaviside procedure which has been discussed by Vallarta.'
Let I1, I2, . . ., 'I' be a set of forces impressed on a system of n-degrees

of freedom whose coordinates we may designate as Ji, //2, .. ., ikA. Write
the expressions for the potential, dissipative and kinetic energies in terms
of these coordinates, thus

*T = Al1162 + 12 A U^,2 + ...+ A 12+1+2 + .
Q = 2B112 + 2 B222 + . + B1212+ .. .

U=2 C16+ 2 C2+2 + ...+ C1441\2 + . (13)
U = ~~~ (13)

T, Q and U are the kinetic energy, dissipative energy and potential energy,
respectively, and A, B and C are constants. Substitute these in the
Lagrange-Rayleigh equation

dt (a^*2)+ a^* + a = t (14)
dt \42/

We then obtain the following set of equations

a14',1 + a.24'2 + . . . = *1.......... ......... ;>(15)
where, for compactness, the general constant ars is the operator

a2a
Ars 2+Brs a+Crs

The solution of any one of the variables is then possible by eliminating
all the others, provided the constants and the impressed forces are known.
In general

2a 11 a'2 4
........... ............. At(16)

V+"n =~v , + aa )2

where A defines the determinant
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Vi al a12 . . .

a2l a22 *-

......... . . .....* (17)

a., an2 . . .

Without any loss of generality, we may put all the forces but one equal to
zero. Then we have

aOvb=alls (18)

or, to avoid subscripts, and putting Z for all
dV

VA=dZ . (19)dZ

Now, if all the impressed forces were zero, the determinant (17) above
would vanish. That is V = 0. If in equations (15), we attempt to
obtain the normal solutions by putting , - we1' after the impressed
forces are put equal to zero in them, we obtain the determinental eqva-
tions of the p's; thus

V (p) = 0. (20)
Further, suppose that

- Eep (21)

which is permissible and substitute in (19) after the p's have been written
into V

1 dV(I)E(pt (22)
#V(p) dZ

If next we assume V (p) is complex, being made up of two components,
one real and one imaginary, we may write

V(p) =V1(p)+jpV2P , j = - 1 (23)
V1 and V2 are functions of V. The first necessarily vanishes, since the
period of the force is identical to that obtained from the determinental
equation. Therefore,

V(P) = jpV2 P)
dV (p) dp + jp dV 2(P) (24)

dZ ~dZ dZ

The last term on the right of the second equation is also zero. Substitut-
ing these in (22) we get

=jpV2(p) V2(P)-dZ e` (25')
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or if i is written for i/-
Eept

= L.d d_Z (25)

The E denotes summation over the roots of the determinental equation.
Equation (25) is identical to the equation of subsidence obtained in (11)
according to Heaviside's procedure. It has been deduced, however,
without the application of the Conjugate Theorem, although the same
limitations hold, namely, that there are no null or repeated roots of p.

l M. S. Vallarts, "Heaviside's Proof of His Expansion Theorem," Jl. A. I. E. E,
April, 1926.

2 Lord Rayleigh, "Scientific Papers," 1, 176-187; and "Theory of Sound," 103-142.
3 Oliver Heaviside, "Electrical Papers," 1, "On Induction between Parallel Wires,"

127-129.
4 Ibid., "Contributions to the Theory of the Propagation of Current in Wires,"

142-148.
Loc. cit., 3, 2, 372-374.

THE DISTRIBUTION OF CHI-SQUARE
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R. A. Fisher' gives a table of x2 and states that for large values of n,
the number of degrees of freedom in the distribution,

/2X2- /2n - 1 is normally distributed with a = 1. (1)

It is interesting to ask what other formulas of a similar sort might be used.
When the integrand f(x) of a definite integral vanishes at the limits

and has a single maximum, a useful approximation to the value of the
integral can sometimes be found by expanding log f(x) about its maximum
x = m, writing

p(x) = logf(x) = P(m) + q'(x- m) + 1/20"(m)(x- m)2+...

Jbf() ib (m
,s(M)(X-tn)2d( ),ff(x)dx =

I
eeo)e2~~ dx (approx.)

or J f(x)dx = e4 (M)

or log f f(x)dx = (p(m) + -log 2ir - log [-S&t(m)I
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